受験の物理屋さん

大学受験の参考書や問題集を紹介

高校力学

1-10万有引力

投稿日:2020年3月11日 更新日:

 

前回はこちら!1-9単振動

 

ここではケプラーの法則・万有引力の法則について学びます。

ケプラーの法則は直接問われることは少ないのですが、証明問題の途中に使ったりします。

また、一度は聞いたことがある万有引力の法則を数式で表して、これを利用して第1・第2宇宙速度を計算ししょう。

 

 

用語集

 

直接問われることはないと思いますが、しっかり覚えましょう!

 

用語 説明
天動説 地球を中心として周りの天体が動いていると考えること
ケプラーの第一法則 惑星は太陽を一つの焦点とする楕円軌道を描く
ケプラーの第二法則 面積速度一定の法則。惑星と太陽を結ぶ線分が、一定時間に描く面積は一定である
ケプラーの第三法則 惑星の公転周期の2乗は楕円軌道の半長軸の3乗に比例する
万有引力の法則 二つに物体間に働く力はそれぞれの質量の積に比例し、距離の二乗に反比例する
第一宇宙速度 地表近くを円軌道を描いて回る物体の速度
第二宇宙速度 地球から飛び去るために必要な最小限の速度

 

では内容に入ります。

 

 

ケプラーの法則

ケプラーの第一法則

第一法則:惑星は太陽を一つの焦点とする楕円運動を描くというものです。

(入試に直接出ることはあまりないですね・・・。)

ここでは重要ではありませんが楕円の式は \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) で表されます。

 

 

ケプラーの第二法則

第二法則は面積速度一定の法則です。

これは一定時間に描く「太陽」「惑星の初期位置」「\(t\) 秒後の惑星の位置」の三点を頂点とした三角形の面積がどこでも一定であるというものです。

 

下の図で、青い惑星 A が A’ に移動する時間をtとします。そして同じ軌道に乗っているオレンジの惑星 B が \(t\) 秒間かけて B’ にたどり着いたとき、青い面積とオレンジの面積は等しくなるというものがこの第二法則です。

 

 

 

万有引力

 

万有引力は二つに物体間に働く力はそれぞれの質量の積に比例し、距離の二乗に反比例する。

というものです式はそのままで

$$F=G\frac{m_1m_2}{r^2}\tag{1}$$

式に出てきた \(G\) は万有引力定数と呼ばれその値は

$$G=6.67\times 10^{-11}\tag{2}$$

です。この値は覚える必要はないでしょう。

 

 

万有引力の式を導出してみましょうか。

また運動方程式を変形します

$$F=ma=mr\omega^2=mr(\frac{2\pi}{T})^2\tag{3}$$

(ただし \(m\) は惑星の質量)

円運動で覚えてほしい\(a=r\omega^2\)の関係は覚えていますでしょうか?忘れていたら復習しましょう!

 

さらにそれを公転周期の二乗が半長軸の三乗に比例する「ケプラーの第三法則 \(T^2=kr^3\) 」を用いると

$$F=\frac{4\pi^2m}{kr^2}\tag{4}$$

こうなります。(ただし k は定数)

ここで作用反作用の法則より太陽も同じ力を受けます。

$$F=\frac{4\pi^2M}{kr^2}\tag{5}$$

(ただし \(M\) は太陽の質量)これらを同時に満たすには

$$F=G\frac{Mm}{r^2}\tag{6}$$

としなければいけません。よって万有引力が導かれました。

 

 

さて、もちろん万有引力は地球上でも働いているので今まで使ってきた重力加速度 \(g\) と

$$mg=G\frac{Mm}{R^2}\tag{7}$$

が成り立ちます。この式から地球上の物体の質量 \(m\) を消すと

$$gR^2=GM\tag{8}$$

が導かれます。この式は次の宇宙速度の話で出てきます。

 

 

第一宇宙速度・第二宇宙速度

第一宇宙速度

第一宇宙速度とは地表近くを円軌道を描いて回る物体の速度のことです。

これは運動方程式を立てればわかります。

$$m\frac{v^2}{R}=G\frac{Mm}{R^2}\tag{9}$$

左辺は等速円運動するときの加速度と速度の関係式\(ma=m\frac{v^2}{r}\)をそのまま使いました。右辺は万有引力の式で、両辺に出てくる \(R\) は地球の半径です。この方程式と式\(8\)より

$$\frac{v^2}{R}=\frac{gR^2}{R^2}\tag{10}$$

$$v=\sqrt{gR}\tag{11}$$

になります。これが第一宇宙速度です。

 

 

万有引力による位置エネルギー

力を微分すればエネルギーになるので

$$U=\frac{d}{dr}F=\frac{d}{dr}(G\frac{Mm}{r^2})=-G\frac{Mm}{r}\tag{12}$$

となります。

 

第二宇宙速度

第二宇宙速度とは地球から飛び去るために必要な最小限の速度のことです。

これは地球から宇宙に向けて発射する「ロケットが持つ運動エネルギー」が「万有引力によるエネルギー」を超えればロケットが地球から飛び去れます。

ということで

$$\frac{1}{2}mv^2_0>G\frac{Mm}{R}\tag{13}$$

$$v_0>\sqrt{2gR}\tag{14}$$

になります。先ほどと同様\(8\)式を利用しました。

 

 

問題

 

では一問問題を解いてみましょう。

 

 

では答えを書いていきます。

 

万有引力による運動では面積速度が一定です。

 

そのため

$$\frac{1}{2}Rv_1$$

単位は [m^2/s] です。

もう一つの速度の比を求めてみましょう。

 

面積速度は一定ですので

$$\frac{1}{2}Rv_1=\frac{1}{2}2Rv_2$$

$$\frac{v_2}{v_1}=\frac{1}{2}$$

です。

 

 

まとめ

 

今回はケプラーの法則や宇宙速度について学びました。

それぞれの言葉の意味を直接入試で問われることはあまりないのですが、言葉を理解していれば問題がグッと解きやすくなるはずです。

しっかりと覚えてから問題に取り組みましょう!

 

次回は熱理学!高校熱力学全体概要

 

-高校力学
-

執筆者:

関連記事

1-8円運動

前回はこちら!1-7運動量と力積   ここから円運動です。 力学はもう少しで終わりなので頑張りましょう!     用語集   とりあえず用語を覚えましょう。 & …

1-1 変位と速度と加速度

    高校物理で最初に学ぶ分野は力学です。 力学は物理の中でも最も基本的な分野の一つであると考えられ、あとで学ぶ電磁気や原子分野でも力学に出てきた公式を使うことがあります。 今回 …

1-3.剛体に働く力・モーメント

  前回はこちら!1-2落下・投げ上げ・放物運動     ここでは「剛体」「モーメント」について説明します。 前回の放物運動は小球(大きさを無視した物体)を取り扱いました …

1-5運動方程式

  前回はこちら1-4力のつり合いと作用反作用   力学で最重要といっても過言ではないと思います。 様々な問題に出てきます。本当によく見かけます。     運動 …

1-2落下・投げ上げ・放物運動

前回はこちら! 1-1 変位と速度と加速度   ここでは「自由落下」「鉛直投げおろし」「鉛直投げ上げ」「水平運動」「放物運動」について取り扱います。 これらの運動は小球(大きさを無視できるよ …